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SUMMARY

A general derivation is given for the radiation incident on a

small flat plate from a uniformly radiating sphere. The results

are presented as a function of the separation of the bodies and the

orientation of the plate. The derived equations permit a deter-

mination of the total power input to a plate, whose absorptivity is

to be defined, from a radiating sphere whose surface properties

are to be defined. In addition, a series of curves is given which

represents the power input from earth radiation to one side of a

flat plate for various orientations of the plate, for a range of alti-

tudes from 200 km to 32,000 km above the earth. These curves

are based upon the assumption that the earth is a uniform diffuse

emitter radiating as a black body at a temperature of 250°K. The

instantaneous earth-emitted radiation incident on the elements of

the surface of any satellite can be determined with these curves.
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POWER INPUT TO A SMALL FLAT PLATE

FROM A DIFFUSELY RADIATING SPHERE,

WITH APPLICATION TO EARTH SATELLITES

by

F. G. Cunningham

Goddard Space Flight Center

INTRODUCTION

The impetus for consideration of this problem came from the need for a convenient

method of determining the radiative power input from the earth to a given side of a flat

plate oriented in an arbitrary fashion; e.g., a paddle containing solar cells affixed to an

artificial satellite. Because of the fact that, at least to a first approximation, the earth

can be considered a black body radiating uniformly at approximately 250°K (Reference 1),

the treatment presented herein considers a diffusely emitting * sphere with a uniform

emittance per unit area of the surface; and this method is equally applicable to diffusely

emitted or reflected thermal radiation or to visible radiation so long as the source is

uniform. This general emittance is represented by the quantity A. If thermal radiation

is being considered it follows that A : crT4, where _ is the Stefan-Boltzmann constant

and T is the absolute temperature for a black body.

This problem can be divided into two parts, one of which is much less difficult than

the other. The first part, called Case I, arises when the plate is so oriented that the

sphere, as seen from the plate, appears as a circular disk (Figure 1). However, when

the plate is so oriented that its plane falls within the tangent cone (the cone defining the

limits of the facing disk of the sphere), the side of the plate in question receives radia-

tion from only a portion of the disk. In other words, self-shielding of the plate destroys

the ease of integration of Case I and introduces complicated integrals (Case II) over the

visible portions of the disk (Figures 2 and 3).

*A diffuse emitter is one for which the emitted power in any direction varies as the cosine of the angle
between the given direction and the normal to the emittlng element.
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CASEh DISK FULLY VISIBLE

For any general calculation of this type, dealing only with incoherent diffuse radia-

tion, the integration over the surface of the sphere can be replaced by an integration

over the circular disk, provided that the solid angle subtended by the disk equals that

subtended by the sphere (Reference 2).

Figure 1 - Geometry of Case I

The geometry of Case I is shown in Figure 1.

We shall define the following quantities:

dA =

dS =

dfl =

_=

r =

H = the distance between the plate and the center

of the sphere in units of sphere radii;

k = the angle between the normal to the plate

and the line of centers H;

the maximum angle subtended by the sphere;

the elemental area of the plate;

the elemental area of the disk which replaces

the sphere;

= the angle of integration defining the position

of dS;

the solid angle subtended at dS by the plate;

the angle between dA and r;

the radius vector between dA and dS.

Figure 1 also defines the limits of Case I:

7"/

;_ +_m <_" .

We now introduce two new quantities, E and a, which represent the generalized gray

body emissivity of the sphere and generalized absorptivity of the plate, respectively. The

term generalized indicates that these quantities are applicable to all possible types of

radiation. The general power input to the plates can be written as

PI = A_...._a_fdfldS±, (i)

where
cL_ cos

r 2

and dSi is the component of dS perpendicular to r.



The solid angle subtended by the plate at each element dS_ varies as we traverse

the circle corresponding to constant ¢, because cos fl varies with azimuthal position.

Consequently we can utilize the average value of cos _ for the complete circle,

cos fl -- cos _ cos _, (2)

where the cos _ term gives the projection of dA along H ; it will be seen later that this

simplification is not possible for Case II. Also, since we have taken an azimuthal aver-

age of the solid angle dfl we can take for dS± the total area of an elemental ring given by

dS----i: 2_r 2 sl. ¢ de. (3)

Equation 1 becomes

CmP1 = 2AEa dA cos _ sin ¢ cos _bde. (4)
0

Carrying out the integration, we have

I_S in2c_] Cm

P1 = 2A_a dA cos k L_j0 = AEa dA cos k sin2_b m ;
(5)

but sin Cm = 1/H (cf. Figure 1), and therefore

P1 = Aea dA cosH2 (6)

CASEIh DISK PARTLY VISIBLE

Part A: _'/2-9_m < _._ _/2

The geometry for Case II is defined in Figure 2.

Both Figures 2 and 3 show the limits of the visible

portion of the disk. Careful examination of Figure 3

shows that two subregions, IIA1, and IIA2, must be

considered:

(]:IA 1) 0 < ¢ <_ ,r/2- ;_ ;

(I_A2) rr/2 - k < ¢ < era'
Figure 2 - Geometry of Case II,

Part A



Figure 3 - Limits of integra-
tion of _, for Case II, Part A

Figure 3 shows the elemental ring given by _ = constant,

over which we shall integrate. It is necessary at this

stage to introduce an azimuthal angle _ if the correct

value of dS is to be determined. As shown, _ has the

range 0 _< _ _< _m where, in general, Cm = ?;(a'_)" When

_< 7/2 - _ we are in subregion IIA, where Cm : _; but

when ¢ > n/2 - _, we are in subregion IIA_, and _m lies

somewhere in the region 7/2 _< Cm < n. In addition to the

quantity Cm in subregion HA 2, the angle _ introduced

previously must be calculated. In general, Z= Z(_,¢,_).

The general expression for the power input to the plate (for Case II, Part A) is

2Aea dA I f0 2A_a dA f Jo
P2A - w sin _ d_b cos fi d_ + _ sin _ de cosfl d¢. (7)

0 7z/2-k

Now i'm = _(_';_) can be determined in subregion HA 2 by referring to Figures 1, 2, and

3. We define a quantity r 0 which equals r when _ = 7/2 - _. Then

r sin _ cos(_ - _m) -- ro sin(n/2 - h). (8)

Expanding the cosine and sine terms we have

r sin _b cos Cm = - ro cos k. (9)

From Figure 1,

r 0 cos(_/2 - h) : H - sin _m; (10)

then

H - sin Cm H - sin _ (Ii)
ro = sin _ ' and r = cos

Substituting Equation 11 into Equation g yields

cos _ cos ¢ (12)
cos _m = - sin _ sin ¢ '

To determine J = _(_,_,_), consider Figure 4. Projecting the radius r onto the

plane of the plate defines the shaded triangle ABQ, from which cos _ can be determined.



r Sin/_

Figure 4 - Geometric construction used to determine the angle/g
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From Figure 4, it is seen that

2

r0 sin4 _ 2r0 sin2_ cos _ sin ¢ cos _b + sin2_b sin2_b + cos 2_ sin2q b cos2¢ • (13)
sin2fl = r 2 r

With the value of r 0 from Equation 11, Equation 13 becomes

sin2fl = 1 - cos2fi = sin2_ cos2_ - 2 sin _ cos _ sin qb cos _b cos

+ COS2_. sin2q5 cos2¢ + sin2q_ sin2_. (14)

Therefore

cos2fl = 1 - sin2_ cos2¢ + 2 sin _ cos _ sin ¢ cos _ cos ¢ - sin2¢ sin2¢

_ COS2_ sin2_ cos2_ (15)

which becomes) with suitable trigonometric ma.nipulation,

COS2_ -- sin29b sin2_ cos2_ + 2 sin _ cos _ sin _ cos _ cos _ + cos2_ cos2_. (16)

Since the right-hand member of Equation 16 is a perfect square,

cos fl = cos _ cos ¢ + sin _ sin _ cos _. (17)

NOW, with the results of Equation 17, Equation 7 becomes

2AE_t dA _° sin _d¢ _ (cos _ cos ¢ + sin _ sin ¢cos _) d_P2A -

2AEa dA _= _m+ Tr /2"_ sin ¢ de (cos _ COS q_ + sin _ sin _b cos _) d_. (18)

We shall first integrate over _. The first of the two _ integrals is

17

j (cos k cos ¢ + sin _ sin _ cos _) de = _r cos )_ cos ¢;
0

and the second integral is

I

0 (cos _ cos _ + sin_ sin_cos_)d_ = cos _cos qbcos "I cos _cos _b + (sin2__cos2_)_
- sin _ sin ¢

where, Equation 12 is used for the value of _m"

(19)

(20)



Equation 18 now becomes

,_'/ 2- )_ sin "1 I/H

P2A 2Aea dA f0 c°s _ sin ¢ c°s ¢ de + 2hEa dA f £= _ sin ¢(sin2¢ - cos2_) 2 de
/2-X

-I
sin I/H

+ cos )_ sin _ cos ¢ COS-I sin

/2-_,

We next evaluate the three integrals. The first one can be done directly:

_r/2- X

2A+a dA cos )_I sin ¢ cos q_d_b = A+a dA cos3_ . (22)
J0

The second integral is

sin "I I/H _I'I/H2 I

2Aea dA f 1 2Aea dA f
7T j sin gb(sin2¢ - cos2_) T de - 7T (sin2_- z2)2- dz, (23)

J
_/ 2- ), aln

with the change of variable

COS _ -- Z and dz : - sin ¢ de ; (24)

thus the second integral of Equation 21 becomes

z(sin 2 - z2)] sin2)_

-- + -_
2A_a dA

which, upon insertion of the limits, is

_ I_H- I/H 2

(25)

Aea dA 1
By collecting terms, we can now rewrite Equation 23:

2Aea dA
77

lln "I I/H 1

-- f sin _(sin2¢ - cos2_)T de
/2-k

-hEa dA sin2£ H 2 - l)l'(l-H 2 cos2k)Ir

zr H2 sin2)_ "_-+ sin'1 \ H sin k ]J'

(26)

(27)
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Now consider the third integral of Equation 21; this integral may be integrated by parts

directly if the following substitutions are made:

let

u = cos "1 (- cot k cot ¢) , du
- csc2¢ d¢

(tan2_ - ¢ot2¢) _

and

dv = sin ¢ cos ¢ de,
sin2_

v - 2

The partial integration then gives

2Aea dA

7/-- fu dv

2A_a dA co _. 1 (-cot _. cot 95) + T- _ _ sin2q5 cos"

(tan2_. - cot2¢)__J

(28)

Since the sine and cosecant terms go out in the second term, we have an additional inte-

gration to perform which is (with the proper limits inserted):

sin "1 I/H . -1 1/H

TC°S _" fn dfib 1 COS2h- f s'n2 sin _ dc;b !

/2-), (tan2_ - cot2¢)_ /2-), (sin2_ - cos2_b) 2

If we make the change of variable u = cos _b, du = - sin <_dq_, Equation 29 becomes

(29)

sin "I I/H _I- I/H 2

cos2_ _ sin 9_ dqb - cos2k f du2 1 = _ 1
/2-), (sin2N _ cos2¢)-_ sin k (sin2N _ u2)T

= ----f-- - sin" I L H sin N J "

Consequently, inserting the limits into the first term of Equation 28 and combining with

Equation 30 gives the final form of the third integral of Equation 21:

2A_a dA
gln "I l/H

f ( oo 0) 0-- cos _. sin _ cos qb cos'l - sin )_ sin _b
_/$-X

2Aea dA
_cos _ i)_ _)

_r col 3_. cos2 _.

" "--'/--- + --T- - .i.'*\, .i._ /jf



Upon substitution of the results of Equations 22 through 31 into Equation 21 we have the

final expression for the power input:

O

[--

r 'l2hea dA sin -1 (H2-1) g

2H 2 cot .

Now, if the terms in the large brackets, multiplied by

2:'-_, are represented by Y1, a function of H and _,
then

P2A = Aca dA YI (H, h.) , (33)

where YI(H) can be computed for various values of

the parameter a and plotted for convenient use.

(32)

Part B: rr/2 < k_< 71"/2 +_bm

The geometrical situation of Part B is shown in

Figures 5 and 6. It is clear that this case is simpler

than before because only one possible region is under

consideration, where _m is given by Equation 12. The

rangeof integration of ¢ isgiven by (_.-7r/2) _< _ _<era.

A check of the earlier expression given for cos fl will

show that it is still applicable in the present situation.

The general expression for the power input to the

plate (for Case II, Part B) can be written:

2AE_dA fS_ j'_mP2B - ?T cos /3 sin ¢ de d_b , (34)
,-"_/2 0

which is nothing more than Equation 7 with new limits

on the _ integration. In expanded form this equation

is given by the second part of Equation 18.

When the integration over ¢ is carried out, the

last two terms of Equation 21 remain with a suitable

change in limits:

Figure 5 - Geometry of Case II,
Part B

Figure 6 - Limits of inte-
gration of _ for Case II,
Part B
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2A_ dA
P2B -- _T

• -1

ln 1/H 1
-- sin qb(sin2_ - cos2_) I d_b

- "n/2

llln "1 1/H

+ rr cos _ sin _ cos _ cos -1 sin ;_ sin qb
-_/2

The firstintegral in Equation 35 is identicalto the one integrated in Equations 23 through

27, while the second integral is identicalin form to the one integrated in Equations 28

through 31. The only difference in the resuR isthat the arc-cosine terms axe not equal

because the values of _ are not the same, and in the integrationby parts (Equation 28)

the du has changed sign. However, so long as we remain cognizant of the limits of _ in

each case no trouble will arise. Consequently, the result can be written:

P2B r l2Aea dA sin "1 (H 2 - 1) 5

,_ ---_--- LHsi-n_

* 2-_ _o_X - (H2-1) ½ _ot x (_-1)½ .

Now we let the expression in this set of large brackets, multiplied by 2/% equal the

function Y2, and thus

(36)

P2B : Aea dA Y2(H,_ ) , (37)

where Y2(H) can be computed for various values of _ and plotted for convenient use.

RESULTS

The geometrical dependence (i.e., the functions Y1 and Y2) of the radiation calcula-

tion for Case II, Parts A and B (sometimes called the shape modulus) is presented

graphically in Figures 7 and 8. The input to the plate for any arbitrary orientation can

immediately be determined by using Figures 7 and 8, in conjunction with Equations 6, 33,

and 37.

Up to this point, the input in question concerns only one side of the plate -- called

side A. The input to the other side -- called B, which in the figures would be the side

whose normal points up -- clearly follows from the observation that the situation, from

one side to the other, is symmetric about )_ = _/2. In other words, the input to side B at

;_= _/2 - x degrees is equal to the input to side A at _ = _/2 + x degrees, and vice-

versa. Thus, to determine the input to side B when the normal to side A makes an angle

;_ with the line of centers, merely replace k by _ - k.
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As a direct application of the preceding calculations a series of curves may be

plotted (Figures 9 and 10) which give the earth-radiation power input to a flat plate of

unit area and absorptivity 1. As a first approximation the earth can be considered to

radiate as a black body at 250°K, for which A : _T 4 is the generalized emittance. In

addition, the earth is assumed to be perfectly spherical and the independent variable H

is given in kilometers above the surface of the earth.

For this application Equations 6, 33, and 37, become:

P1
(2.215 x 10 -2 ) cos X

z

H 2
wstts ; (38)

and

P2A : (2.215 x 10 "2) Y1 watts; (39)

P2B : (2.215 x 10 -2) Y2 watts. (40)
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